Definisi Rumus kimia+Geometri molekul dan rumus struktur


Rumus kimia (juga disebut rumus molekul) adalah cara ringkas memberikan informasi mengenai perbandingan atom-atom yang menyusun suatu senyawa kimia tertentu, menggunakan sebaris simbol zat kimia, nomor, dan kadang-kadang simbol yang lain juga, seperti tanda kurung, kurung siku, dan tanda plus (+) dan minus (-). Jenis paling sederhana dari rumus kimia adalah rumus empiris, yang hanya menggunakan huruf dan angka.
Untuk senyawa molekular, rumus ini mengidentifikasikan setiap unsur kimia penyusun dengan simbol kimianya dan menunjukkan jumlah atom dari setiap unsur yang ditemukan pada masing-masing molekul diskrit dari senyawa tersebut. Jika suatu molekul mengandung lebih dari satu atom unsur tertentu, kuantitas ini ditandai dengan subskrip setelah simbol kimia (walaupun buku-buku abad ke-19 kadang menggunakan superskrip). Untuk senyawa ionik dan zat non-molekular lain, subskrip tersebut menandai rasio unsur-unsur dalam rumus empiris.
Misalnya: C6H12O6: glukosa
Seorang kimiawan berkebangsaan Swedia abad ke-19 bernama Jöns Jacob Berzelius adalah orang yang menemukan sistem penulisan rumus kimia.


Konektivitas dari sebuah molekul akan sangat berpengaruh pada sifat-sifat fisik dan kimianya. 2 molekul yang tersusun atas atom yang sama dengan jumlah yang sama (misalnya sepasang isomer) dapat memiliki sifat yang sama sekali berbeda jika atom-atomnya tersambung berbeda atau posisinya berpindah. Dalam beberapa kasus, rumus struktur cukup berguna karena dapat menggambarkan atom mana yang tersambung pada atom mana.
Rumus kimia dapat menjelaskan informasi tentang tipe dan susunan ikatan dalam senyawa tersebut. Misalnya, etana terdiri dari 2 atom karbon yang berikatan tunggal satu sama lain, dengan tiap atom karbon juga berikatan dengan 3 atom hidrogen. Rumus kimianya dapat dituliskan CH3CH3. Contoh lainnya, etenamempunyai ikatan rangkap dua di antara atom karbonnya (sehingga tiap atom karbon hanya berikatan dengan 2 atom hidrogen). Rumus kimia etena adalah: CH2CH2, dapat juga dituliskan H2C=CH2 atau H2C::CH2. Gambar 2 garis atau 2 pasang titik dua menunjukkan ikatan rangkap. Untuk ikatan rangkap tiga, dapat dilambangkan dengan tiga garis atau tiga titik dua (:::). Setiap garis atau titik dua melambangkan satu ikatan.

Definisi Atom+sejarah+inti ato(sifat-sifat)Lengkap


Atom adalah suatu satuan dasar materi, yang terdiri atas inti atom serta awan elektron bermuatan negatif yang mengelilinginya. Inti atom terdiri atas proton yang bermuatan positif, dan neutron yang bermuatan netral (kecuali pada inti atom Hidrogen-1, yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Sekumpulan atom demikian pula dapat berikatan satu sama lainnya, dan membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan disebut sebagai ion. Atom dikelompokkan berdasarkan jumlah proton dan neutron yang terdapat pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.
Istilah atom berasal dari Bahasa Yunani (ἄτομος/átomos, α-τεμνω), yang berarti tidak dapat dipotong ataupun sesuatu yang tidak dapat dibagi-bagi lagi. Konsep atom sebagai komponen yang tak dapat dibagi-bagi lagi pertama kali diajukan oleh para filsuf India dan Yunani. Pada abad ke-17 dan ke-18, para kimiawan meletakkan dasar-dasar pemikiran ini dengan menunjukkan bahwa zat-zat tertentu tidak dapat dibagi-bagi lebih jauh lagi menggunakan metode-metode kimia. Selama akhir abad ke-19 dan awal abad ke-20, para fisikawan berhasil menemukan struktur dan komponen-komponen subatom di dalam atom, membuktikan bahwa 'atom' tidaklah tak dapat dibagi-bagi lagi. Prinsip-prinsip mekanika kuantum yang digunakan para fisikawan kemudian berhasil memodelkan atom.
Dalam pengamatan sehari-hari, secara relatif atom dianggap sebuah objek yang sangat kecil yang memiliki massa yang secara proporsional kecil pula. Atom hanya dapat dipantau dengan menggunakan peralatan khusus seperti mikroskop gaya atom. Lebih dari 99,9% massa atom berpusat pada inti atom, dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil, yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkantransmutasi, yang mengubah jumlah proton dan neutron pada inti. Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan fotonyang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur, dan memengaruhi sifat-sifat magnetis atom tersebut.





Walaupun awalnya kata atom berarti suatu partikel yang tidak dapat dipotong-potong lagi menjadi partikel yang lebih kecil, dalam terminologi ilmu pengetahuan modern, atom tersusun atas berbagai partikel subatom. Partikel-partikel penyusun atom ini adalah elektron, proton, dan neutron. Namun hidrogen-1 tidak mempunyai neutron. Demikian pula halnya pada ion hidrogen positif H+.
Dari kesemua partikel subatom ini, elektron adalah yang paling ringan, dengan massa elektron sebesar 9,11 × 10−31 kg dan mempunyai muatan negatif. Ukuran elektron sangatlah kecil sedemikiannya tiada teknik pengukuran yang dapat digunakan untuk mengukur ukurannya. Proton memiliki muatan positif dan massa 1.836 kali lebih berat daripada elektron (1,6726 × 10−27 kg). Neutron tidak bermuatan listrik dan bermassa bebas 1.839 kali massa elektron atau (1,6929 × 10−27 kg).
Dalam model standar fisika, baik proton dan neutron terdiri dari partikel elementer yang disebut kuark. Kuark termasuk kedalam golongan partikel fermion dan merupakan salah satu dari dua bahan penyusun materi dasar (yang lainnya adalah lepton). Terdapat enam jenis kuark dan tiap-tiap kuark tersebut memiliki muatan listri fraksional sebesar +2/3 ataupun −1/3. Proton terdiri dari dua kuark naik dan satu kuark turun, manakala neutron terdiri dari satu kuark naik dan dua kuark turun. Perbedaan komposisi kuark ini memengaruhi perbedaan massa dan muatan antara dua partikel tersebut. Kuark terikat bersama oleh gaya nuklir kuat yang diperantarai oleh gluon. Gluon adalah anggota dari boson tolok yang merupakan perantara gaya-gaya fisika



Inti atom terdiri atas proton dan neutron yang terikat bersama pada pusat atom. Secara kolektif, proton dan neutron tersebut disebut sebagai nukleon (partikel penyusun inti). Diameter inti atom berkisar antara 10-15 hingga 10-14m. Jari-jari inti diperkirakan sama dengan \begin{smallmatrix}1,07 \sqrt[3]{A}\end{smallmatrix}  fm, dengan A adalah jumlah nukleon. Hal ini sangatlah kecil dibandingkan dengan jari-jari atom. Nukleon-nukleon tersebut terikat bersama oleh gaya tarik-menarik potensial yang disebut gaya kuat residual. Pada jarak lebih kecil daripada 2,5 fm, gaya ini lebih kuat daripada gaya elektrostatik yang menyebabkan proton saling tolak menolak.
Atom dari unsur kimia yang sama memiliki jumlah proton yang sama, disebut nomor atom. Suatu unsur dapat memiliki jumlah neutron yang bervariasi. Variasi ini disebut sebagai isotop. Jumlah proton dan neutron suatu atom akan menentukan nuklida atom tersebut, sedangkan jumlah neutron relatif terhadap jumlah proton akan menentukan stabilitas inti atom, dengan isotop unsur tertentu akan menjalankan peluruhan radioaktif.
Neutron dan proton adalah dua jenis fermion yang berbeda. Asas pengecualian Pauli melarang adanya keberadaan fermion yangidentik (seperti misalnya proton berganda) menduduki suatu keadaan fisik kuantum yang sama pada waktu yang sama. Oleh karena itu, setiap proton dalam inti atom harusnya menduduki keadaan kuantum yang berbeda dengan aras energinya masing-masing. Asas Pauli ini juga berlaku untuk neutron. Pelarangan ini tidak berlaku bagi proton dan neutron yang menduduki keadaan kuantum yang sama.
Untuk atom dengan nomor atom yang rendah, inti atom yang memiliki jumlah proton lebih banyak daripada neutron berpotensi jatuh ke keadaan energi yang lebih rendah melalui peluruhan radioaktif yang menyebabkan jumlah proton dan neutron seimbang. Oleh karena itu, atom dengan jumlah proton dan neutron yang berimbang lebih stabil dan cenderung tidak meluruh. Namun, dengan meningkatnya nomor atom, gaya tolak-menolak antar proton membuat inti atom memerlukan proporsi neutron yang lebih tinggi lagi untuk menjaga stabilitasnya. Pada inti yang paling berat, rasio neutron per proton yang diperlukan untuk menjaga stabilitasnya akan meningkat menjadi 1,5.

Jika massa inti setelah terjadinya reaksi fusi lebih kecil daripada jumlah massa partikel awal penyusunnya, maka perbedaan ini disebabkan oleh pelepasan pancaran energi (misalnya sinar gamma), sebagaimana yang ditemukan pada rumus kesetaraan massa-energi Einstein, E = mc2, dengan m adalah massa yang hilang dan c adalah kecepatan cahaya. Defisit ini merupakan bagian dari energi pengikatan inti yang baru.Jumlah proton dan neutron pada inti atom dapat diubah, walaupun hal ini memerlukan energi yang sangat tinggi oleh karena gaya atraksinya yang kuat.Fusi nuklir terjadi ketika banyak partikel atom bergabung membentuk inti yang lebih berat. Sebagai contoh, pada inti Matahari, proton memerlukan energi sekitar 3–10 keV untuk mengatasi gaya tolak-menolak antar sesamanya dan bergabung menjadi satu inti. Fisi nuklir merupakan kebalikan dari proses fusi. Pada fisi nuklir, inti dipecah menjadi dua inti yang lebih kecil. Hal ini biasanya terjadi melalui peluruhan radioaktif. Inti atom juga dapat diubah melalui penembakan partikel subatom berenergi tinggi. Apabila hal ini mengubah jumlah proton dalam inti, atom tersebut akan berubah unsurnya.

Fusi dua inti yang menghasilkan inti yang lebih besar dengan nomor atom lebih rendah daripada besi dan nikel (jumlah total nukleon sama dengan 60) biasanya bersifat eksotermik, yang berarti bahwa proses ini melepaskan energi. Adalah proses pelepasan energi inilah yang membuat fusi nuklir padabintang dapat dipertahankan. Untuk inti yang lebih berat, energi pengikatan per nukleon dalam inti mulai menurun. Ini berarti bahwa proses fusi akan bersifat endotermik.

Berdasarkan definisi, dua atom dengan jumlah proton yang identik dalam intinya termasuk ke dalam unsur kimia yang sama. Atom dengan jumlah proton sama namun dengan jumlah neutronberbeda adalah dua isotop berbeda dari satu unsur yang sama. Sebagai contohnya, semua hidrogen memiliki satu proton, namun terdapat satu isotop hidrogen yang tidak memiliki neutron (hidrogen-1), satu isotop yang memiliki satu neutron (deuterium), dua neutron (tritium), dll. Hidrogen-1 adalah bentuk isotop hidrogen yang paling umum. Kadang-kadang ia disebut sebagai protium. Semua isotop unsur yang bernomor atom lebih besar daripada 82 bersifat radioaktif.
Dari sekitar 339 nuklida yang terbentuk secara alami di Bumi, 269 di antaranya belum pernah terpantau meluruh. Pada unsur kimia, 80 dari unsur yang diketahui memiliki satu atau lebih isotop stabil. Unsur 43, 63, dan semua unsur lebih tinggi dari 83 tidak memiliki isotop stabil. Dua puluh tujuh unsur hanya memiliki satu isotop stabil, manakala jumlah isotop stabil yang paling banyak terpantau pada unsur timah dengan 10 jenis isotop stabil


Setiap partikel elementer mempunyai sifat mekanika kuantum intrinsik yang dikenal dengan nama spin. Spin beranalogi denganmomentum sudut suatu objek yang berputar pada pusat massanya, walaupun secara kaku partikel tidaklah berperilaku seperti ini. Spin diukur dalam satuan tetapan Planck tereduksi (ħ), dengan elektron, proton, dan neutron semuanya memiliki spin ½ ħ, atau "spin-½". Dalam atom, elektron yang bergerak di sekitar inti atomselain memiliki spin juga memiliki momentum sudut orbital, manakala inti atom memiliki momentum sudut pula oleh karena spin nuklirnya sendiri.
Medan magnet yang dihasilkan oleh suatu atom (disebut momen magnetik) ditentukan oleh kombinasi berbagai macam momentum sudut ini. Namun, kontribusi yang terbesar tetap berasal dari spin. Oleh karena elektron mematuhi asas pengecualian Pauli, yakni tiada dua elektron yang dapat ditemukan pada keadaan kuantum yang sama, pasangan elektron yang terikat satu sama lainnya memiliki spin yang berlawanan, dengan satu berspin naik, dan yang satunya lagi berspin turun. Kedua spin yang berlawanan ini akan saling menetralkan, sehingga momen dipol magnetik totalnya menjadi nol pada beberapa atom berjumlah elektron genap.
Pada atom berelektron ganjil seperti besi, adanya keberadaan elektron yang tak berpasangan menyebabkan atom tersebut bersifat feromagnetik. Orbital-orbital atom di sekeliling atom tersebut saling bertumpang tindih dan penurunan keadaan energi dicapai ketika spin elektron yang tak berpasangan tersusun saling berjajar. Proses ini disebut sebagai interaksi pertukaran. Ketika momen magnetik atom feromagnetik tersusun berjajaran, bahan yang tersusun oleh atom ini dapat menghasilkan medan makroskopis yang dapat dideteksi. Bahan-bahan yang bersifat paramagnetikmemiliki atom dengan momen magnetik yang tersusun acak, sehingga tiada medan magnet yang dihasilkan. Namun, momen magnetik tiap-tiap atom individu tersebut akan tersusun berjajar ketika diberikan medan magnet.
Inti atom juga dapat memiliki spin. Biasanya spin inti tersusun secara acak oleh karena kesetimbangan termal. Namun, untuk unsur-unsur tertentu (seperti xenon-129), adalah mungkin untuk memolarisasi keadaan spin nuklir secara signifikan sehingga spin-spin tersebut tersusun berjajar dengan arah yang sama. Kondisi ini disebut sebagai hiperpolarisasi. Fenomena ini memiliki aplikasi yang penting dalam pencitraan resonansi magnetik.

Atom menduduki sekitar 4% densitas energi total yang ada dalam alam semesta terpantau, dengan densitas rata-rata sekitar 0,25 atom/m3. Dalam galaksi Bima Sakti, atom memiliki konsentrasi yang lebih tinggi, dengan densitas materi dalam medium antarbintang berkisar antara 105 sampai dengan 109 atom/m3. Matahari sendiri dipercayai berada dalam Gelembung Lokal, yaitu suatu daerah yang mengandung banyak gas ion, sehingga densitas di sekelilingnya adalah sekitar 103 atom/m3. Bintang membentuk awan-awan padat dalam medium antarbintang, dan proses evolusioner bintang akan menyebabkan peningkatan kandungan unsur yang lebih berat daripada hidrogen dan helium dalam medium antarbintang. Sampai dengan 95% atom Bima Sakti terkonsentrasi dalam bintang-bintang, dan massa total atom ini membentuk sekitar 10% massa galaksi. Massa sisanya adalah materi gelap yang tidak diketahui dengan jelas.




Proton dan elektron yang stabil muncul satu detik setelah kejadian Dentuman Besar. Dalam masa waktu tiga menit sesudahnya, nukleosintesis Dentuman Besar kebanyakan menghasilkan helium, litium, dan deuterium, dan mungkin juga beberapa berilium dan boron. Atom pertama (dengan elektron yang terikat dengannya) secara teoritis tercipta 380.000 tahun sesudah Dentuman Besar, yaitu ketika alam semesta yang mengembang cukup dingin untuk mengijinkan elektron-elektron terikat pada inti atom. Sejak saat itulah, inti atom mulai bergabung dalam bintang-bintang melalui proses fusi nuklir dan menghasilkan unsur-unsur yang lebih berat sampai dengan besi.
Isotop seperti litium-6 dihasilkan di ruang angkasa melalui spalasi sinar kosmis. Hal ini terjadi ketika sebuah proton berenergi tinggi menumbuk inti atom, menyebabkan sejumlah besar nukleon berhamburan. Unsur yang lebih berat daripada besi dihasilkan di supernova melalui proses r dan di bintang-bintang AGB melalui proses s. Kedua-duanya melibatkan penangkapan neutron oleh inti atom. Unsur-unsur seperti timbal kebanyakan dibentuk melalui peluruhan radioaktif unsur-unsur lain yang lebih berat.


Definisi Gaya elektromagnetik+sejarahGaya elektromagnetik+elektromagnetik+elektron

Dalam fisikagaya elektromagnetik adalah gaya yang diakibatkan oleh medan elektromagnetik terhadap partikel-partikel yang bermuatan listrik. Adalah gaya elektromagnetik yang menjagaelektron-elektron dan proton-proton tetap bersama dalam suatu atom. Pada akhirnya, gaya ini pun menjaga atom-atom tetap bersama dalam suatu molekul. Gaya elektromagnetik bekerja via pertukaran partikel penghantar yang disebut foton dan foton virtual. Pertukaran partikel-partikel penghantar antara dua benda ini menciptakan gaya perseptual yang bukan hanya mendorong ataupun menarik partikel dari satu sama lainnya, melainkan pertukaran ini juga mengubah karakter partikel yang saling bertukar partikel penghantar.


SEJARAH

  1. Muatan listrik menarik ataupun menolak satu sama lainnya dengan suatu gaya yang berbanding terbalik terhadap kuadrat jarak antara keduanya; muatan yang berlawan saling menarik, sedangkan yang sama saling menolak.
  2. Kutub magnet menarik ataupun menolak satu sama lainnya dengan cara yang sama dan selalu ada dalam keadaan berpasangan: tiap kutub utara memiliki kutub selatannya.
  3. Arus listrik dalam kawat menciptakan medan magnet yang melingkari sekitar kawat. Arah medan tersebut bergantung pada arah arus.
  4. Suatu arus diinduksi dalam suatu kumparan kawat ketika ia digerakkan mendekati ataupun menjauhi medan magnetik, ataupun suatu magnet digerakkan menuju ataupun menjauhi kumparan tersebut. Arah arus bergantung pada pergerakan tersebut.

Definisi Neutron+Neutron+Subatomik(Lengkap)


Neutron atau netron adalah partikel subatomik yang tidak bermuatan (netral) dan memiliki massa 940 MeV/c² (1.6749 × 10-27 kg, sedikit lebih berat dari proton. Putarannya adalah ½.
Inti atom dari kebanyakan atom (semua kecuali isotop Hidrogen yang paling umum, yang terdiri dari sebuah proton) terdiri dari proton dan neutron.
Di luar inti atom, neutron tidak stabil dan memiliki waktu paruh sekitar 10 menit, meluluh dengan memancarkan elektron dan antineutrino untuk menjadi proton. Metode peluruhan yang sama (peluruhan beta) terjadi di beberapa inti atom. Partikel-partikel dalam inti atom biasanya adalah neutron dan proton, yang berubah menjadi satu dan lainnya dengan pemancaran dan penyerapan pion. Sebuah neutron diklasifikasikan sebagai baryon dan terdiri dari dua quark bawah dan satu quark atas. Persamaan Neutron antibendanya adalah antineutron.
Perbedaan utama dari neutron dengan partikel subatomik lainnya adalah mereka tidak bermuatan. Sifat netron ini membuat penemuannya lebih terbelakang, dan sangat menembus, membuatnya sulit diamati secara langsung dan membuatnya sangat pentin sebagai agen dalam perubahan nuklir.
Penelitian yang dilakukan Rutherford selain sukses mendapatkan beberapa hasil yang memuaskan juga mendapatkan kejanggalan yaitu massa inti atom unsur selalu lebih besar daripada massa proton di dalam inti atom. Rutherford menduga bahwa terdapat partikel lain di dalam inti atom yang tidak bermuatan karena atom bermuatan positif disebabkan adanya proton yang bermuatan positif. Adanya partikel lain di dalam inti atom yang tidak bermuatan dibuktikan oleh James Chadwick pada tahun 1932. Chadwick melakukan penelitian dengan menembak logam berilium menggunakan sinar alfa. Hasil penelitian menunjukkan bahwa suatu partikel yang tak bermuatan dilepaskan ketika logam berilium ditembak dengan sinar alfa dan partikel ini disebut sebagai neutron.
Netron tak bermuatan dan bermassa 1 sma (pembulatan).







Unsur kimia+definisi+zat kimia



Unsur kimia, atau hanya disebut unsur, adalah zat kimia yang tidak dapat dibagi lagi menjadi zat yang lebih kecil, atau tidak dapat diubah menjadi zat kimia lain dengan menggunakan metode kimia biasa.
Partikel terkecil dari unsur adalah atom. Sebuah atom terdiri atas inti atom (nukleus) dan dikelilingi oleh elektron. Inti atom terdiri atas sejumlah proton dan neutron. Hingga saat ini diketahui terdapat kurang lebih 117 unsur di dunia.




Penamaan unsur telah jauh sebelum adanya teori atom suatu zat, meski pada waktu itu belum diketahui mana yang merupakan unsur, dan mana yang merupakan senyawa. Ketika teori atom berkembang, nama-nama unsur yang telah digunakan pada masa lampau tetap dipakai. Misalnya, unsur "cuprum" dalam Bahasa Inggris dikenal dengan copper, dan dalam Bahasa Indonesia dikenal dengan istilah tembaga. Contoh lain, dalam Bahasa Jerman "Wasserstoff" berarti "hidrogen", dan "Sauerstoff" berarti "oksigen".
Nama resmi dari unsur kimia ditentukan oleh organisasi IUPAC. Menurut IUPAC, nama unsur tidak diawali dengan huruf kapital, kecuali berada di awal kalimat. Dalam paruh akhir abad ke-20, banyak laboratorium mampu menciptakan unsur baru yang memiliki tingkat peluruhan cukup tinggi untuk dijual atau disimpan. Nama-nama unsur baru ini ditetapkan pula oleh IUPAC, dan umumnya mengadopsi nama yang dipilih oleh penemu unsur tersebut. Hal ini dapat menimbulkan kontroversi grup riset mana yang asli menemukan unsur tersebut, dan penundaan penamaan unsur dalam waktu yang lama (lihat kontroversi penamaan unsur).

Sebelum kimia menjadi bidang ilmu, ahli alkemi telah menentukan simbol-simbol baik untuk logam maupun senyawa umum lainnya. Mereka menggunakan singkatan dalam diagram atau prosedur; dan tanpa konsep mengenai suatu atom bergabung untuk membentuk molekul. Dengan perkembangan teori zat, John Dalton memperkenalkan simbol-simbol yang lebih sederhana, didasarkan oleh lingkaran, yang digunakan untuk menggambarkan molekul.
Sistem yang saat ini digunakan diperkenalkan oleh Berzelius. Dalam sistem tipografi tersebut, simbol kimia yang digunakan adalah singkatan dari nama Latin (karena waktu itu Bahasa Latin merupakan bahasa sains); misalnya Fe adalah simbol untuk unsur ferrum (besi), Cu adalah simbol untuk unsur Cuprum (tembaga), Hg adalah simbol untuk unsur hydrargyrum (raksa), dan sebagainya.
Simbol kimia digunakan secara internasional, meski nama-nama unsur diterjemahkan antarbahasa. Huruf pertama simbol kimia ditulis dalam huruf kapital, sedangkan huruf selanjutnya (jika ada) ditulis dalam huruf kecil.

Non unsur, khususnya dalam kimia organik dan organometalik, seringkali menggunakan simbol yang terinspirasi oleh simbol-simbol unsur kimia. Berikut adalah contohnya:
Cy - sikloheksil; Ph - fenil; Bz - benzoil; Bn - benzil; Cp - Siklopentadiena; Pr - propil; Me - metil; Et - etil; Tf - triflat; Ts - tosil; Hb - hemoglobin.


Ion+Definisi Ion+anion & kation


Ion adalah atom atau sekumpulan atom yang bermuatan listrik. Ion bermuatan negatif, yang menangkap satu atau lebih elektron, disebut anion, karena dia tertarik menuju anode. Ion bermuatan positif, yang kehilangan satu atau lebih elektron, disebut kation, karena tertarik ke katode. Proses pembentukan ion disebut ionisasi. Atom atau kelompok atom yang terionisasi ditandai dengan tikatas n+ atau n-, di mana n adalah jumlah elektronyang hilang atau diperoleh.




Larutan ion adalah larutan yang mengandung ion yang dapat bergerak bebas sehingga bisa menghantarkan arus listrik.

Anion adalah ion bermuatan negatif, sedangkan kation adalah ion yang bermuatan positif. Masing-masing anion dan kation dapat dianalisis menggunakan metode khusus.

Ion pertama kali disajikan dalam bentuk teori oleh Michael Faraday pada sekitar tahun 1830, untuk menggambarkan mengenai bagian molekul yang bergerak ke arah anode atau katode dalam suatu tabung hampa udara (vacuum tube, CRT). Namun, mekanisme peristiwa ini baru dideskripsikan pada1884 oleh Svante August Arrhenius dalam disertasi doktornya di University of Uppsala. Pada mulanya, teori ini tidak diterima (ia memperoleh gelarnya dengan nilai minimum), tetapi kemudian disertasinya memenangi Hadiah Nobel Kimia pada tahun 1903


Isotop+definisi Isotop+flueorin



Isotop adalah bentuk dari unsur yang nukleusnya memiliki nomor atom yang sama,tetapi jumlah proton di nukleus - dengan massa atom yang berbeda karena mereka memiliki jumlah neutron yang berbeda.
Kata isotop, berarti di tempat yang sama, berasal dari fakta bahwa seluruh isotop dari sebuah unsur terletak di tempat yang sama dalam tabel periodik.
Secara bersama, isotop-isotop dari unsur-unsur membentuk suatu set nuklida. Sebuah nuklida adalah satu jenis tertentu nukleus atom, atau lebih umum sebuah aglomerasi proton dan neutron. Lebih tepat lagi untuk mengatakan bahwa sebuah unsur seperti fluorine terdiri dari satu nuklida stabil dan bukan dia memiliki satu isotop stabil.
Dalam nomenklatur ilmiah, isotop (nuklida) dispesifikasikan berdasarkan nama unsur tertentu oleh sebuah "hyphen" dan jumlah nukleon (proton dan neutron) dalam nukleus atom (misal, helium-3, karbon-12, karbon-14, besi-57, uranium-238). Dalam bentuk simbolik, jumlah nukleon ditandakan sebagai sebuah prefik naik-ke-atas terhadap simbol kimia (misal, 3He, 12C, 14C, 57Fe, 238U).